link to RWJMS home page
Banner Image Here

 

Welcome Lab Members
Research Happenings

 

JACINTO LAB PUBLICATIONS

 

Moloughney, J.G., Kim, P.K., Vega-Cotto, N.M., Wu, C., Zhang, S., Adlam, M., Lynch, T., Chou, P.C., Rabinowitz, J.D., Werlen, G., and Jacinto, E.  mTORC2 responds to glutamine catabolite levels to modulate the hexosamine biosynthesis enzyme GFAT1.  Molecular Cell 2016; 63, 811-826

Chi, O.Z., Barsoum, S., Vega-Cotto, N.M., Jacinto, E., Liu, X., Mellender, S.J., and Weiss, H.R.Effects of rapamycin on cerebral oxygen supply and consumption during reperfusion after cerebral ischemia.  Neuroscience 2016; 316,321-327.

 

Tobias, I., Kaulich, M., Kim, P.K., Simon, N., Jacinto, E., Dowdy, S., King, C.C., and Newton, A.C.Protein kinase Czeta exhibits constitutive phosphorylation and phosphatidylinositol-3,4,5-triphosphate-independent regulation.  J. Biol.Chem. 2016; 473(4):509-523.

 

Lynch, T., Moloughney, J., and Jacinto, E. The mTOR complexes in cancer cell metabolism, in PI3-K-mTOR in cancer and cancer therapy 2016, Springer, p29-63, ed B. Leyland Jones, P.De, N.Dey.

 

Chi, O.Z., Wu, C.C., Liu, X., Rah, K.H., Jacinto E., and Weiss, H.R. Restoration of cerebral oxygen consumption with rapamycin treatment in a rat model of autism-tuberous sclerosis.  Neuromolecular Medicine 2015; 17(3): 305-313.

 

Jacinto E. and Werlen G. The mTOR complexes in T cell development and immunity.  in Encyclopedia of Inflammatory Diseases 2015; ed M.J.Parnham, Springer.

 

Chou, P.C., Oh, W.J., Wu, C.C., Moloughney, J., Ruegg, M.A., Hall, M.N., Jacinto, E. and Werlen, G. Mammalian target of rapamycin complex 2 modulates alpha/betaTCR processing surface expression during thymocyte development.  J. Immunol. 2014; 193:1162-1170.

 

DeStefano, M.A. and Jacinto, E. Regulation of insulin receptor substrate-1 by mTORC2. Biochem. Soc. Trans. 2013;  41, 896-901.

Kim, S.J., DeStefano, M.A., Oh, W.J., Wu, C., Vega-Cotto, N.M., Finlan, M., Liu, D., Su, B., and Jacinto, E.  mTOR complex 2 regulates proper turnover of insulin receptor substrate-1 via the ubiquitin ligase Fbw8.  Molecular Cell 2012; 48, 875-887.

Wu, C., Chou, P., and Jacinto, E.  The target of rapamycin; structure and functions, in Protein Kinases 2012, Intech Publishing, p1-40, ed. Xavier, G.

Oh, W., and Jacinto, E.  mTOR complex 2 signaling and functions. Cell Cycle 2011 ; 10, 1-12.

Su, B., and Jacinto, E.  mTOR signaling to the AGC kinases.  Crit. Rev. in Biochem. and Molec. Biol. 2011, 46, 527-547.

Jacinto, E.  TFEBulous control of traffic by mTOR.  EMBO J. 2011, 30, 3215-3216

Oh, W., Wu, C., Kim, S.J., Facchinetti, V., Julien, L.A., Finlan, M., Roux, P.P., Su, B., and Jacinto, E. mTORC2 associates with ribosomes to promote cotranslational phosphorylation and stability of nascent Akt polypeptide. EMBO J. 2010; 29, 3939-3951.

Jacinto, E.  AGC kinases in mTOR signaling.  Ed. M. Hall and F. Tamanoi: The Enzymes 2010; 27, 101-128. Burlington: Academic Press

Facchinetti, V., Ouyang, W., Wei, H., Soto, N., Lazorchak, A., Gould, C., Lowry, C., Newton, A.C., Mao, Y., Miao, R.Q., Sessa, W.C., Qin, J., Zhang, P., Su, B., and Jacinto, E. The mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C. EMBO J 2008; 27, 1932-1943.

Jacinto, E.  What controls TOR? IUBMB Life 2008 ; 60, 483-96.

Jacinto, E., and Lorberg, A.  TOR regulation of AGC kinases in yeast and mammals.   Biochem. J. 2008; 410, 19-37.

Jacinto, E. , Facchinetti, V., Liu, D., Soto, N., Wei, S., Jung, S.Y., Huang, Q., Qin, J., and Su, B. SIN1/MIP1 maintains rictor-mTOR complex integrity and regulates Akt phosphorylation and substrate specificity.  Cell 2006; 127, 125-137.

Jacinto, E. Phosphatase targets in TOR signaling.  Ed. G. Moorhead, Methods Mol. Biol 2006; 365, 323-334.  Humana Press Inc., Totowa, NJ.

Jacinto, E., Loewith, R., Schmidt, A., Lin, S., Ruegg, M., Hall, A., and Hall, M.N. Mammalian TOR complex 2 (mTORC2) controls the actin cytoskeleton and is rapamycin insensitive.  Nature Cell Biology 2004; 6, 1122-1128.

Jacinto, E., and Hall, M.N.  TOR signaling in bugs, brain, and brawn.  Nature Reviews (Mol. Cell. Biol.) 2003; 4, 117-126.

Bonenfant, D., Schmelzle, T., Jacinto, E., Crespo, J.L., Mini, T., Hall, M.N., and Jenoe, P. Quantitation of changes in site specific phosphorylation: a simple method based on stable isotope labelling and mass spectrometry.  Proc. Natl. Acad. Sci. 2003; 100, 880-885.

Loewith, R., Jacinto, E., Wullschleger, S., Lorberg, A., Crespo, J.L., Bonenfant, D., Oppliger, W., Jenoe, P., and Hall, M.N. Two TOR complexes, only one of which is rapamycin sensitive, have distinct roles in cell growth control.  Molecular Cell 2002; 10, 457-468.

Jacinto, E., Guo, B., Arndt, K.T., Schmelzle, T., and Hall, M.N. TIP41 interacts with TAP42 and negatively regulates the TOR signaling pathway.  Molecular Cell 2001;  8, 1017-1026.

Werlen, G., Jacinto, E., Xia, Y., and Karin, M. Calcineurin preferentially synergizes with PKC-theta to activate JNK in T lymphocytes. EMBO J 1998; 17, 3101-3111.

Jacinto, E., Werlen, G., and Karin, M. Cooperation between Syk and Rac1 leads to synergistic JNK activation in T lymphocytes.   Immunity 1998;  8, 31-41.

Wu, Z., Wu, J., Jacinto, E., and Karin, M. Molecular cloning and characterization of human JNKK2, a novel Jun N-terminal kinase (JNK)-specific kinase.  Mol. Cell. Biol 1997;  17, 7407-7416.

Su, B., Jacinto, E., Hibi, M., Kallunki, T., Karin, M., and Ben-Neriah, Y. JNK is involved in signal integration during costimulation of T lymphocytes.  Cell 1994; 77, 727-736.