School of Graduate Studies, Rutgers University

“Communicating Science”
Spring 2019, Wednesdays 4:00 – 7:00 PM
Location of class: Robert Wood Johnson Medical School Busch Campus, Piscataway, NJ
 RWJMS Research Tower Room V14

Course Numbers:
School of Graduate Studies –16:718:560 or 6718 5600S, 3 credits

Who is eligible to take this course – This course is designed for pre-doctoral students in the sciences. Permission by the course director is also required.

Co-Course Directors:
• Nicholas M. Ponzio, Professor, School of Graduate Studies, Newark Division; 973-972-5238; MSB C-540; ponzio@njms.rutgers.edu
• Janet Alder, Associate Professor and Assistant Dean, School of Graduate Studies, New Brunswick/Piscataway Division; 732-235-5392; janet.alder@rutgers.edu

Instructors:
• Holly Hilton, Director, Biomarkers and Translational Sciences PPD Laboratories
• David Dannenfelser, Lecturer, Rutgers BA Theater Program
• Nick Linardopoulos, Assistant Teaching Professor & Public Speaking Coordinator; Rutgers University School of Communication and Information
• Mary Nucci, Professor; Department of Human Ecology at the Rutgers School of Environmental and Biological Sciences
• Monica Devanas, Director of Faculty Development and Assessment Programs; Rutgers Center for Teaching Advancement and Assessment Research (CTAAR)

Collaborators:
• Steve Ritland, Executive Director – Project Leadership; Celgene
• Shanon Hunt, Senior Global Program Manager; Translational Clinical Oncology; Novartis Pharmaceuticals Corporation
• Patricia Munoz, Media Specialist, WISEM/SciWomen
• Amanda Aronczyk, Reporter and WNYC Radio journalist

Course Description: We envision our Ph.D. graduates able to speak and write about their research accurately and clearly to scientific colleagues, as well as non-scientists. Unfortunately, time spent learning to communicate their research pales in comparison to time spent learning how to design and conduct their research. A major goal of Communicating Science is to instill in students an advanced ability to not only to communicate clearly, accurately, and vividly about their research, but also to emphasize its significance. This course provides methods of instruction and improvisation to reinforce communication skills obtained in basic courses. It provides our trainees with new ways to communicate more effectively so they can apply these skills to diverse audiences and in different career settings.
The course brings together a multidisciplinary faculty of scientists, educators, communication experts, and theater arts professionals from academia and industry to teach, improve, and assess advanced communication skills in our Ph.D. trainees. The course includes elements of didactic and improvisation content with built in opportunities to create and practice written and oral presentations for diverse audiences.

Aims of the Course The overarching aims of Communicating Science are to:
• complement and enhance skills obtained by students from their basic courses, using methods involving classroom instruction, improvisational techniques, practice sessions for oral presentations, writing assignments, and real-life simulations.
• help Ph.D. trainees learn and practice new methods to communicate more effectively with colleagues and collaborators in other disciplines, as well as the public (including potential employers, policymakers, donors, students, and media representatives).

Course Content By taking the course, students will:
• learn techniques that focus on communicating science clearly and vividly and develop skills that are central to oral and written communication on any subject.
• practice delivering written and oral scientific messages effectively for different audiences, including defining goals, identifying main points, speaking and writing without jargon, explaining meaning and context, responding to questions, using storytelling techniques and multimedia elements.
• be videotaped during the semester as part of the learning process. As a culminating activity, students will develop and deliver an engaging short oral presentation on a scientific topic.
• actively participate not only as writers and speakers, but also as active peer listeners and constructive peer critics of each other’s work in a rigorous but supportive environment.
• choose a science communication related topic and work with a professional in that field to develop a capstone project. Examples include:
 o Make a pitch to a venture capital group for a start-up company
 o Write a press release, newspaper article, op-ed column, or letter to the editor of a newspaper on a contemporary topic
 o Prepare lesson objectives, a lecture, or exam questions for a biology or chemistry class of college students
 o Prepare a slide deck on a new drug for physicians as part of a medical communications team

Course Policies and Evaluation: This course is about the importance of communication. Students will prepare both written and oral communication assignments that will be evaluated by their peers and faculty instructors. Specific assignments will be handed out and discussed in class at least one week prior to their due date. A major assignment in the course will be to develop a three minute thesis (3MT) based on an abstract of their thesis research project. This oral presentation will be videotaped, critiqued by peers and faculty, and further revised for improvement. Students will receive feedback on their capstone communication project from the professional with whom they work and from faculty involved in the course.
Attendance – The class meets once per week, and attendance at all class meetings is expected, including the first session.

Grading and Evaluation – Grading will be Pass/Fail. Students will be evaluated on their understanding of information as evidenced by their performance in class discussions, oral presentations, and writing assignments. There will also be a link to an anonymous evaluation by Survey Monkey. All students must complete the course evaluation in order to receive a grade. Those missing more than 2 sessions and/or more than 2 written assignments will receive a grade of Incomplete (“IN”). Incomplete grades must be remediated. Failure to remediate results in grades of IN will be changed to F.

Academic Integrity – All students are responsible for locating, reading, and abiding by the University Policy on Academic Integrity for Graduate Students. The policy is available on-line at http://academicintegrity.rutgers.edu/academic-integrity-policy/ and is outlined in the GSBS handbook

- Piscataway/New Brunswick http://rwjms.rutgers.edu/gsbs/current/student_handbook.html
- Newark: http://njms.rutgers.edu/gsbs/current_students/docs/2014/PhDHandbook.pdf

All work that carries your name on it is considered yours unless specifically stated otherwise by properly citing the research and ideas of others. Failure to read and understand the policy is not an acceptable excuse for violating the policy.

Students with Disabilities: Rutgers University welcomes students with disabilities into all of the University's educational programs. In order to receive consideration for reasonable accommodations, a student with a disability must contact the appropriate disability services office at the campus where you are officially enrolled, participate in an intake interview, and provide documentation: https://ods.rutgers.edu/students/documentation-guidelines. If the documentation supports your request for reasonable accommodations, your campus’s disability services office will provide you with a Letter of Accommodations. Please share this letter with your instructors and discuss the accommodations with them as early in your courses as possible. To begin this process, please complete the Registration form on the ODS web site at: https://ods.rutgers.edu/students/registration-form.

Readings & Media: There are no required books for this course. Audios/videos may be drawn from online sources such as Science Friday, TED talks, Story Collider, Radio Lab, and Stony Brook University’s Alan Alda Center for Communicating Science. Readings may be drawn from scientific journals, popular science publications (e.g., The Science Times), and science blogs. Students are encouraged to consult other sources such as the following books, for example:

• Olson, Randy. (2009). Don’t be such a scientist: talking substance in an age of style. Washington, DC: Island Press. [Olson also runs a blog with commentary and ideas (http://thebenshi.com/)]

• http://www.scholarsstrategynetwork.org/
• https://www.aaas.org/pes/communicating-science-resources

Copyright disclosure: ©2018 Rutgers, The State University of New Jersey. All rights reserved. Do not copy or reproduce without permission.
<table>
<thead>
<tr>
<th>Date</th>
<th>Lecture</th>
<th>Activities</th>
<th>Homework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class 1</td>
<td>Jan 23 Introduction – Course overview; What is effective communication? What are unique aspects of communicating science? Discussion of the capstone project</td>
<td>Icebreakers: Improvisation exercises</td>
<td>Prepare a 3 minute oral presentation about your research = 3 minute thesis (3MT)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Write a short description of the plan for your capstone project and upload to Canvas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Due date: Class 2)</td>
</tr>
<tr>
<td>Class 2</td>
<td>Jan 30 Communicating your science (short lecture)</td>
<td>3MT by all students (videotaped)</td>
<td>Write a lay abstract about your research – 250 words and upload to Canvas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Due date: Class 3)</td>
</tr>
<tr>
<td>Class 3</td>
<td>Feb 6 Scientific storytelling</td>
<td>Picture exercise for telling a scientific story</td>
<td>Turn your 3MT into a 30 second elevator pitch about your research</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Developing speeches</td>
<td>(Due date: Class 4)</td>
</tr>
<tr>
<td>Class 4</td>
<td>Feb 13 Distilling your message; Knowing your audience</td>
<td>Feedback on your abstract; Give your elevator pitch to classmates</td>
<td>Work on capstone project</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Practice 3MT</td>
</tr>
<tr>
<td>Class 5</td>
<td>Feb 20 Building confidence in public speaking; Voice, presence, body language; Amy Cuddy TED talk on presence, body language, etc.</td>
<td>Improvisation methods relevant to lecture content</td>
<td>Work on capstone project</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Practice 3MT</td>
</tr>
<tr>
<td>Class 6</td>
<td>Feb 27 Scientific papers; How to structure a written story</td>
<td>Answer questions to sections of a paper. Share progress of capstone projects</td>
<td>Write a 500 word Introduction about your research and upload to Canvas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Due date: Class 7)</td>
</tr>
<tr>
<td>Class 7</td>
<td>March 6 Speech giving skills</td>
<td>Working rehearsal for 3MT</td>
<td>Submit first draft of capstone to mentor and upload to Canvas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Practice 3MT</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Due date: Class 8)</td>
</tr>
</tbody>
</table>
| Class 8 | March 13 | Effective teaching; Lecture objectives, slides, team based learning, flipped classroom; writing exam questions and Communicating Risk | Peer editing of slides | 1) Teaching lecture homework to upload to Canvas:
• In one paragraph, describe something that you have learned in a lecture related to your research area, that would have been better served using an active learning method.
• In one paragraph, describe the activities that would be included in this activity.
• List 3 learning objectives for the same activity.

2) Copy onto a USB a deck of power point slides that you would use for a 10 min talk based on your abstract

(Due date: Class 9) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>March 20</td>
<td>Spring Break – No class</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Class 9 | March 27 | Visualizing science; How to communicate visually with slides | Persuasive written and oral communication | Work on capstone project
Practice 3MT |
| Class 10 | April 3 | Speech giving skills | Flipped classroom
Working rehearsal for 3MT | 1) Submit the second draft of your capstone project to your mentor and upload to Canvas.

2) Bring to the next class a digital version (on a USB) of a poster from a meeting you or someone from your lab has been to.

(Due date: Class 11) |
| Class 11 | April 10 | Scientific posters | Critique each other’s old posters | Print out a resume or CV for a mock job interview

(Due date: Class 12) |
| Class 12 | April 17 | Interviewing for a job | Mock job interviews and dress rehearsals for final 3MT | Work on capstone and Practice 3MT |
| **Class 13** | Communicating your science: The people who want (and need) to hear your message
Media: how to write press releases, handle media interviews and write opinion pieces. | Exercises relevant to lecture content | Write a press release or op/ed piece about a controversial scientific topic
Submit your final capstone deliverable
(Due date: Class 14) |
|---|---|---|---|
| **Class 14** | Presentation of capstone projects | Professionals and faculty evaluate capstone projects | Practice your final 3MT
(Due date: Class 15) |
| **Class 15** | Graduation 3MT videotaping and viewing | View 3MT videotapes for critiques and feedback |