Anemia in children

Wilbur Pan, M.D., Ph.D.

Pediatric Hematology/Oncology
Bristol-Myers-Squibb Children’s Hospital
Cancer Institute of New Jersey
Common Conditions Not Referred (Hematology/Oncology). Diagnose and manage patients with hematological disorders that generally do not need referral

- Diagnose, explain, and manage the following hematologic or oncologic conditions:

 - Iron deficiency
 - Hemoglobin traits
 - Alpha and beta thalassemia
 - Sickle cell
 - Hgb E
 - Lead poisoning
 - Transient erythroblastopenia of childhood
 - Minor, common reactions to blood transfusions
 - Benign bone cyst
 - Idiopathic thrombocytopenic purpura
 - Nosebleeds
 - Bruising
What is anemia?
Definition of anemia

• Definitions vary

 • Laboratory – hemoglobin less than two standard deviations below the mean

 • Red blood cell count

 • Hemoglobin

 • Hematocrit
Definition of anemia

- Physiologic – hemoglobin too low to support O2 needs of the body
Hematopoiesis

- Production and development of blood cells

- Pleuripotent stem cell
 - continuous self-replication
 - gives rise to all blood cell lines

- Growth factors (cytokines) - promote differentiation into mature blood elements
Erythroid Maturation Sequence

Early → Intermediate → Late

Proerythroblast (Pronormoblast) Polychromatophilic Normoblast Reticulocyte
Basophilic Normoblast Orthochromatophilic Normoblast Erythrocyte
Red Blood Cell

- Hemoglobin (Hgb) -
 - direct measurement (g/dl)

- Hematocrit (Hct) -
 - packed RBC volume - manual “spun” hematocrit (%)
 - automated counters calculate based on RBC number and size
Red Blood Cell Indices

- Mean corpuscular volume (MCV) - average size of the RBCs
- Mean cell hemoglobin (MCH) - Hgb/RBC
- Mean cell hemoglobin concentration (MCHC) - Hgb/Hct
- Red blood cell distribution width (RDW) - index of size variation
What is anemia?
Factors that affect hemoglobin

- Age
- Sex
- Race
- Altitude
Normal hemoglobin indices

- Hemoglobin: 11 + 0.1 rule

- MCV: 70 + 1 rule
Evaluation of child with anemia

• History

• Symptoms
 • Weakness, malaise, fatigue
 • CNS hypoxia - headaches, faintness, visual changes
 • Skin pallor, thinning and inelasticity
 • Nail brittleness
 • Nonspecific signs and symptoms

• Diet
 • Jaundice

• Family history

• Prior normal CBC
Evaluation of child with anemia

- Physical exam
 - Pallor
 - Jaundice
 - Cardiovascular status
 - Splenomegaly
 - Lymphadenopathy
- Other diseases
Evaluation of child with anemia

• Make sure the child is not bleeding!
Morphologic classification of anemia

- Microcytic anemia
 - Iron deficiency
 - Lead poisoning
 - Thalassemia
 - Anemia of chronic disease
Morphologic classification of anemia

- Macrocytic anemia
- B12 deficiency
- Folate deficiency
- Thiamine depletion
- Aplastic anemia
- Diamond-Blackfan anemia
- Bone marrow infiltration
- Hypothyroidism
- Liver disease
Morphologic classification of anemia

- Normocytic anemia
 - Red cell membrane defects
 - Enzyme defects
 - Hemoglobinopathies
 - Renal disease
 - Antibody mediated hemolysis
 - Microangiopathic hemolysis
 - Splenic sequestration
 - Blood loss
Pathophysiologic classification

• Anemia means not enough RBCs

• Inadequate production

• Excessive destruction
What test?

- Distinguish between decreased production and increased destruction

- Reticulocyte count
Anemia due to inadequate production

- Decreased/altered nutrition
 - iron deficiency, B12 deficiency, folate deficiency, lead poisoning
- Anemia of chronic disease
- Decreased erythropoietin
- Marrow infiltration/dysfunction
 - Infection, drugs, radiation, toxins, TEC, DBA, cancer
Anemia due to excessive destruction

• Acquired
 • antibody mediated
 • toxin mediated, infections (malaria)
 • mechanical (microangiopathic, HUS, artificial valve)

• Intrinsic
 • Membrane defects: hereditary spherocytosis
 • Hemoglobinopathies: Hgb SS, thalassemias
 • Enzyme defects: G6PD, pyruvate kinase
Initial lab tests

- CBC/diff
- Reticulocyte count
- Coomb’s test (direct)
Iron deficiency

- Most common nutritional deficiency
- Required in hemoglobin synthesis
- Heme + globin chains = hemoglobin
- Occurs in RBC cytoplasm
- Hypochromic microcytic anemia
Iron metabolism

- Iron is absorbed primarily in duodenum
 - 25% of heme-bound iron (red meat)
 - 1-2% of non-heme iron
- Body losses of iron are limited
 - 1-2 mg/day by epithelial cell shedding
 - Mucosal block - maintains balance
Transferrin

• Transport protein for iron in blood

• Fully saturated transferrin = TIBC

 • 300 - 350 µg/dl Fe

• Normal transferrin

 • 1/3rd bound with iron

 • 100 - 120 µg/dl Fe (serum iron)
Iron Storage

• Ferritin – protein-iron complex

• Found in all tissues

• BM, liver (transferrin)

• Spleen (RBC breakdown)

• Hemosiderin - breakdown product of ferritin
Development of Iron Deficiency

- Depletion of stores
- ↓ serum ferritin
- ↓ serum Fe, ↑ transferrin (↑ TIBC)
- ↓ stainable BM iron
- ↓ transferrin saturation
- ↓ hemoglobin, myoglobin, Fe proteins
Iron Deficiency Anemia - Clinical Manifestations

- Anemia - nonspecific findings
- Blue sclera
- Pica
- Koilonychia
- Developmental delay
Iron Deficiency Anemia
Laboratory Findings

• Hypochromic microcytic anemia
 • (↓ RBC count, ↓ MCV)

• ↓ Serum ferritin levels

• ↓ Transferrin saturation

 • (↓ serum Fe, ↑ transferrin)
Causes of Iron Deficiency (Adult version)

• External blood loss - most common
 • Female genital tract
 • Gastrointestinal tract

• Increased demand
 • Infancy
 • pregnancy

• Intestinal malabsorption syndrome
Causes of Iron Deficiency (Pediatric version)

• Dietary deficiency
 • Milk monster
 • Decreased bioavailability
 • Increased needs
 • Possible chronic GI losses
 • Vegetarian diets
• Bleeding
Iron Deficiency – Therapy

- Oral supplementation
 - FeSO4: 6 mg/kg elemental iron
 - No milk
 - No milk
 - No milk
 - No milk
 - Fe rich foods
- Parental supplementation
 - Iron dextran
- Developmental followup