

# Factors Associated with Mortality in Coronavirus-Associated Mucormycosis: Results from Mycotic Infections in COVID-19 (MUNCO) Online Registry

Shitij Arora 1, Shivakumar Narayanan 2, Melissa Fazzari 3, Kranti Bhavana 4, Bhartendu Bharti 4, Shweta Walia 5, Neetu Kori 5, Sushila Kataria 6, Pooja Sharma 6, Kavya Atluri 7, Charuta Mandke 8, Vinod Gite 9, Neelam Redkar 10, Mayank Chansoria 11, Sumit Kumar Rawat 12, Rajani S Bhat 13,

<sup>1</sup>Division of Hospital Medicine, Montefiore Medical Center, Albert Einstein College of Medicine, NW651, 111 E 210th Street, Bronx, NY 10467, USA; <sup>2</sup>Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; <sup>3</sup>Division of Biostatistics, Albert Einstein College of Medicine, Bronx, NY 10461, USA; <sup>4</sup>Il India Institute of Medicine, Baltimore, MD 21201, USA; <sup>8</sup>Department of Bioinformatics, University of California, Los Angeles, CA 90095, USA; <sup>8</sup>Department of Ophthalmology, Hinduhridaysamrat Balasaheb Thackarey Medical College and Dr. Rustom Narsi Cooper Municipal General Hospital, Mumbai 400056, Maharashtra, India; <sup>9</sup>Department of Ent., Hinduhridaysamrat Balasaheb Thackarey Medical College and Dr. Rustom Narsi Cooper Municipal General Hospital, Mumbai 400056, Maharashtra, India; <sup>10</sup>Department of Emergeny Medicine, Netaji Subhash Chandra Bose Medical College, Jabalpur 482003, Madhya Pradesh, India; <sup>14</sup>Noble Hospital, Pune 411013, Maharashtra, India; <sup>15</sup>Venkateshwara Hospital, Dwarka, New Dell 110075, Delhi, India; <sup>16</sup>Associate Consultant and Academic Co-Ordinator Nepal Medicial Center, Albert Einstein College of Medicine, New York, NY 10461, USA; <sup>18</sup>Division of Infectious Diseases, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY 10461, USA; <sup>19</sup>Division of Infectious Diseases, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY 10461, USA; <sup>19</sup>Division of Infectious Diseases, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY 10461, USA; <sup>19</sup>Division of Infectious Diseases, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY 10461, USA; <sup>19</sup>Division of Infectious Diseases, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY 10461, USA; <sup>19</sup>Division of Infectious Diseases, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY 10461, USA; <sup>10</sup>Division of Infectious Diseases, Montefiore Medical Center, Albert Einstein Co

#### Introduction

COVID-19-associated mucormycosis (CAM) is associated with high morbidity and mortality. Preliminary data from the Mycotic Infections in COVID-19 (MUNCO) online registry yielded 728 cases from May to September 2021 in four South Asian countries and the United States. A majority of the cases (694; 97.6%) consisted of a mucormycosis infection. The dataset allowed for the analysis of the risk factors for adverse outcomes from CAM.

## Methods

#### **Data Collection**

- This was collected through a REDCap database<sup>1</sup> at <a href="http://covidmucor.com">http://covidmucor.com</a>, as described below<sup>2</sup>.
- Cases:
  - from July 2021 to June 2022
  - entered at discretion of the reporting physician.
- Case definition: histopathologically confirmed infection.
- Defined outcomes:
  - a full recovery or death at the 6-month time point.

## Statistical analysis

- Calculated:
  - mean with standard deviation (SD)
  - median with an inter-quartile range (IQR)
  - o frequencies (n, %).
- Association testing
  - Categorical: Chi-square or Fisher's exact test
  - Continuous: two-sample *t*-test or Wilcoxon test
- Probability of death: a multivariable logistic regression model was used

## **Background**

- CAM emerged as a significant healthcare challenge, with more than 41,000 cases reported as of September 2021 in India alone<sup>3</sup>.
- We established an online registry (Mycotic Infections in COVID-19; MUNCO) to collect clinic—epidemiologic data on CAM online.

Purpose of the study: We sought to evaluate the association of various factors associated with mortality in CAM.

### **Results**

- Included 341 patients total (>70% from India)
  - 258 completed treatment and survived
  - o 83 patients died

| (4) = 40 - 40 - 40 - 40 - 40 - 40 - 40 - 40 | s between group w | turrecovery and de |                   |            |
|---------------------------------------------|-------------------|--------------------|-------------------|------------|
| Baseline Characteristic                     | Overall           | Recovery           | Death             | p -Value ‡ |
|                                             | N = 341           | N = 258            | N = 83            |            |
| Age in years                                | 51.72 (13.02)     | 50.07 (12.70)      | 56.88 (12.72)     | <0.001     |
| Vaccinated                                  | 46 (15.3%)        | 34 (73.9%)         | 12 (26.1%)        | 0.71       |
| Female                                      | 269 (79.4%)       | 204 (75.8%)        | 65 (24.2%)        | 0.79       |
| Male                                        | 70 (20.6%)        | 52 (74.3%)         | 18 (25.7%)        |            |
| BMI $kg/m^2$                                | 24.76 (4.11)      | 25.04 (4.19)       | 23.87 (3.73)      | 0.03       |
| BMI Category:                               |                   |                    |                   |            |
| Underweight (<18.8)                         | 15 (4.5%)         | 5 (33.3%)          | 10 (66.7%)        | 0.001      |
| Normal (18.5 $\leq$ BMI $<$ 25)             | 187 (56%)         | 144 (77%)          | 43 (23%)          |            |
| Overweight $(25 \le BMI < 30)$              | 105 (31.4%)       | 83 (79%)           | 22 (21%)          |            |
| Obese (≥30)                                 | 27 (8.1%)         | 22 (81.5%)         | 5 (18.5%)         |            |
| Comorbidities:                              |                   |                    |                   |            |
| Hypertension                                | 72 (21.1%)        | 50 (69.4%)         | 22 (30.6%)        | 0.17       |
| DM                                          | 286 (83.9%)       | 208 (72.7%)        | 78 (27.3%)        | 0.004      |
| DM with ketoacidosis                        | 11 (3.2%)         | 3 (27.3%)          | 8 (72.7%)         | 0.001      |
| Cancer                                      | 1 (0.3%)          | 0 (0%)             | 1 (100%)          | 0.08       |
| Organ Transplant                            | 7 (2.1%)          | 5 (71.4%)          | 2 (28.6%)         | 0.79       |
| IDU                                         | 4 (1.2%)          | 1 (25%)            | 3 (75%)           | 0.05       |
| HIV+                                        | 1 (0.3%)          | 1 (100%)           | 0 (0%)            | 0.57       |
| Asthma                                      | 3 (0.9%)          | 2 (66.7%)          | 1 (33.3%)         | 0.72       |
| Laboratory values:                          |                   |                    |                   |            |
| CRP mg/L                                    | 54.3 (22.6–98.5)  | 40.2 (18.0–69.6)   | 85.1 (47.0–118.7) | < 0.001    |
| Ferritin ug/L                               | 509 (306–931)     | 359.5 (234–578)    | 763 (372.9–1174)  | < 0.001    |
| A1c%                                        | 8.8 (7.4–10.9)    | 8.0 (6.9–10.0)     | 9.6 (8.3–11.8)    | < 0.001    |
| Days from COVID-19 diagnosis to mucor       | 20 (14–30)        | 21 (15–30)         | 17 (11–27)        | 0.01       |
| <b>Corticosteroid Treatment</b>             | 292 (85.6%)       | 219 (75%)          | 73 (25%)          | 0.49       |
| Dose, prednisone equivalent                 | 50 (40-53.3)      | 50 (40–53.3)       | 53.3 (50–100)     | < 0.001    |
| Type: Dexamethasone                         | 132 (56.2%)       | 101 (76.5%)        | 31 (23.5%)        | 0.43       |
| Methylrednisone                             | 81 (34.5%)        | 56 (69.1%)         | 25 (30.9%)        |            |
| Prednisone                                  | 22 (9.4%)         | 15 (68.2%)         | 7 (31.8%)         |            |
| Treatment duration 10+ days                 | 124 (52.1%)       | 98 (79%)           | 26 (21%)          | 0.03       |

Figure 1a: Baseline Characteristics

|                                              | <b>Estimated Odds Ratio</b> | <i>p</i> -Value |
|----------------------------------------------|-----------------------------|-----------------|
| Patient age, years                           | 1.04 (1.02, 1.07)           | 0.001           |
| Azithromycin treatment                       | 0.99 (0.49, 2.03)           | 0.76            |
| Zinc treatment                               | 0.76 (0.37, 1.57)           | 0.46            |
| History of DM                                | 3.47 (1.01, 11.93)          | 0.02            |
| BMI, kg/m <sup>2</sup>                       | 0.90 (0.82, 0.98)           | 0.03            |
| Steroid treatment  Ref: no steroid treatment | 1.67 (0.68, 4.12)           | 0.22            |
| Known ICU stay  Ref: no known ICU stay       | 1.50 (0.70, 3.25)           | 0.16            |
| Days to mucor (continuous)                   | 0.98 (0.96, 1.00)           | 0.15            |
| Location of mucor: Sinus Ref: not sinus      | 0.23 (0.09, 0.57)           | 0.001           |
| Ophthalmic Ref: not ophthalmic               | 0.87 (0.45, 1.69)           | 0.61            |
| Cerebral  Ref: not cerebral                  | 10.96 (4.93, 24.36)         | <0.0001         |

DM: diabetes mellitus; BMI: body mass index; ICU: intensive care unit.

Figure 2: Logistic Regression results for the probability of death

#### **Outcomes**

- 83 patients died due to CAM (24.3%)
  - Age of non-survivors was 6.8 years higher
  - non-survivors had a lower BMI (-1.14)
  - Non-survivors were treated with a higher median daily dose of prednisone (+3mg)

### **Conclusion**

- Significant association with increased risk of death:
  - Diabetes (mucormycosis)
  - Lower BMI
  - Cerebral disease had much higher odds for death.
    - CNS extension in 21–50% of CAM cases
- No association with poor survival:
  - Corticosteroid treatment dose or duration
  - Use of zinc
- Possible confounding factors
  - Time to a CAM diagnosis was shorter in non-survivors as compared to survivors

## **Limitations**

- potential selection bias
  - differing locations have differing access to care
- lack of comparable registry data for an external validation
- lack of a separate verification for the integrity of data at the entry point
- lack of complete follow-up information.

# References

- Harris P.A., Taylor R., Thielke R., Payne J., Gonzalez N., Conde J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. *J. Biomed. Inform.* 2009;42:377–381. doi: 10.1016/j.jbi.2008.08.010.
- 2. Arora S., Hemmige V.S., Mandke C., Chansoria M., Rawat S.K., Dravid A., Sethi Y., Medikeri G., Jariwala S.P., Puius Y.A. Online Registry of COVID-19–Associated Mucormycosis Cases, India, 2021. *Emerg. Infect. Dis.* 2021;27:2963–2965. doi: 10.3201/eid2711.211322.
- Hagan Ashley COVID-19-Associated Mucormycosis: Triple Threat of the Pandemic. American Society of Microbiology. Published 15 July 2021. [(accessed on 2 October 2021)]. Available online: <a href="https://asm.org/Articles/2021/July/COVID-19-Associated-Mucormycosis-Triple-Threat-of">https://asm.org/Articles/2021/July/COVID-19-Associated-Mucormycosis-Triple-Threat-of</a>