

RWJBarnabas PICU Collaborative DKA Order Set

Initial orders

Admit to PICU under pediatric critical care attending Potential diagnoses:

diabetic ketoacidosis (primary/admitting), altered mental status, metabolic acidosis pH < 7.3 or HCO3<12, diabetes mellitus with hyperosmolarity no coma, diabetes mellitus with hyperosmolarity with coma, dehydration, other disorders of fluids and electrolytes NEC.

Full Code

Vital Signs monitoring every hour; hourly neurochecks Strict I/O's Weigh patient on admission, then daily Notify clinician immediately for any of the following: Systolic Blood Pressure less than _____mmHg or greater than _____mmHg Diastolic Blood Pressure less than _____mmHg or greater than _____mmHg Urine output less than 0.5 ml/kg/hour over 4 hours or greater than 2 ml/kg/hour over 4 hours Mental status changes Blood sugar less than or equal to 100 mg/dL Blood sugar dropping more than 100 mg/dL per hour NPO except ice chips, water, diet soda when mental status allows Maintain 2 IV's Please stop and remove insulin pump

Initial labs (may have been completed prior to PICU admission)

- **Known diabetic:** CBC, BMP, Mg, Phos, HbgA1c, VBG, UA, POC ketones (if available), MRSA screen (if performed at your site), BHCG for pubertal females
- New Onset-diabetic: Labs for Known diabetic AND Anti-thyroid antibodies, Cpeptide, TSH, Free T4, Anti-Gliadin Antibodies, IgA, Insulin level, Tissue Transglutaminase IgA, Anti GAD 65 Antibodies, Anti Insulin Antibodies, Anti IA2 antibodies, fasting lipid panel,

Continuing Labs

Urine dipstick Q 2 hours (or Urinalysis Q void) for glucose and ketones if POC (point of care) ketones not available Glucose by POC q1 until off insulin drip If POC glucose is greater than 600 mg/dL, obtain serum glucose in lab BMP, Mg, Phos q4 VBG q2hrs x2 and if improving then q4 hours until pH >7.25 POC ketones by bedside meter q4 if available

Fluid Orders

Total IVF rate 1.5 x maintenance

Bag 1: 0.9%NaCl+ 20 mEq KCl/L + 15 mmol KPhos/L Bag 2: D10W/0.45%NaCl + 20 mEq KCl/L + 15 mmol KPhos/L **Remove all potassium from the 2 bags until potassium is less than 5.5 mEq/L**

Blood Sugar	Bag 1	<u>Bag 2</u>
>300	100%	0%
150-300	50%	50%
100-150	0%	100%
<100 hold insulin infusion for 30 minutes, notify attending, and	0%	100%
recheck blood glucose. Restart insulin infusion and consider changing		
IVF bag 2 to D12.5 W/0.45%NaCl + 20 mEq KCL/L + 15 mmol		
KPhos/L		

Aim for glucose drop of 50-100mg/dL per hour after starting insulin drip. Aim to achieve glucose of 200-300mg/dL while on insulin drip.

Medications

Insulin Regular via continuous infusion at standard concentration to run at 0.05 units/kg/h - ensure tubing gets flushed with appropriate priming volume in order to minimize insulin adsorption to IV tubing. (BMSCH: for a bag flush tubing with 50 ml of insulin, for a syringe flush microbore tubing with 2mL of insulin solution)

Administer insulin glargine (Lantus) 0.3 Units/kg subcutaneously, on arrival to PICU, if patient is 5 years of age or older, in conjunction with discussion with pediatric endocrinologist on call.

Pneumococcal vaccine if indicated prior to D/C (should have completed 13 valent series, will need 23 valent dose if has not received it) Flu vaccine in season prior to D/C

Consults

Endocrine consult Nutrition consult Social Work consult Case management consult Psych Consult if indicated

Transition to subcutaneous insulin

DKA has resolved when anion gap ≤ 16 . [Anion Gap = Sodium – (Chloride + Bicarbonate)]

Obtain from Pediatric Endocrinologist on call (See Appendix for examples of transition calculations)

- Correction Factor (CF)
- Carbohydrate to Insulin Ratio (CIR)
- Target Blood Sugar (target)

NOTE: Currently RWJBH's formulary short-acting insulin is Eli Lilly's Humalog. The following insulins can be used interchangeably without any dosage adjustments – Humalog, Lispro, Novolog, Aspart.

Immediately before transition:

- Ensure patient's food tray is in the room, check pre-meal blood glucose
- Calculate number of units of short-acting insulin to be given based on CF calculation and pre-meal blood glucose. Do not give insulin yet.
- Correction short-acting insulin = (blood sugar target) divided by correction factor; do not round until this value is added to the meal insulin

Transition:

- Patient eats meal. Count grams of carbohydrates consumed.
- Calculate number of units of insulin to be given as follows:
 - Meal short-acting insulin = carbohydrates consumed / CIR
- Add CIR and CF calculations together unrounded and then round to the nearest half-unit. Give this dose of short-acting insulin by subcutaneous injection immediately after the patient completes meal.
- Turn off insulin IV drip when administering dose of short-acting insulin.
- Change IV fluid bag to 0.9%NaCl+20 mEq/L KCl @ 1x Maintenance rate.

After transition:

- Continue IV fluid bag @ 1x maintenance rate until POC ketone meter is <1 mmol/L or urine ketones are normal.
- Discuss with pediatric endocrinology for further insulin dosing guidelines, including administration of next dose of insulin glargine (Lantus) or resuming insulin pump.
- Anticipated subsequent lantus dosing to be administered 20 to 28 hours after the prior dose, with goal of gradually reaching chronic dose and administration time.
- Anticipate reconnecting insulin pump and resuming administration 20 hours after the prior insulin glargine (Lantus) dose. (Insulin pump settings may be further modified by Endocrinology for chronic management.)

Relevant Literature

Wolfsdorf JI, Glaser N, Agus M, et al. ISPAD Clinical Practice Consensus Guidelines 2018 . Diabetic ketoacidosis and hyperglycemic hyperosmolar state. *Pediatr Diabetes*. 2018;.19(S27):155-177 doi:10.1111/pedi.12701

Munir I, Fargo R, Garrison R, et al. Comparison of a "two-bag system" versus conventional treatment protocol ('one-bag system') in the management of diabetic ketoacidosis. *BMJ open diabetes Res care*. 2017;5(1):e000395. do1.

Kuppermann N, Ghetti S, Schunk JE, et al. Clinical Trial of Fluid Infusion Rates for Pediatric Diabetic Ketoacidosis. *N Engl J Med.* 2018;378(24):2275-2287. doi:10.1056/N1.

Rameshkumar R, Satheesh P, Jain P, et al. Low-Dose (0.05 Unit/kg/hour) Versus Standard-Dose (0.1 Unit/kg/hour) Insulin in the Management of Pediatric Diabetic Ketoacidosis: a Randomized Double-Blind Controlled Trial. *Indian Pediatr.* Published online 2021.EJMoa17161.

Nallasamy K, Jayashree M, Singhi S, Bansal A. Low-dose vs standard-dose insulin in pediatric diabetic ketoacidosis: A randomized clinical trial. *JAMA Pediatr.* 2014;168(11):999-1005. doi:10.101.

Babbitt C, Dadios M, Chau A, et al. Implementation of an Intravenous Fluid Titration Algorithm to Treat Pediatric Diabetic Ketoacidosis. *J Pediatr intensive care*. 2021;10(1):23-30. doi:10.1055/s-0040-171292101/jamapediatrics.2014.1211816i:10.1136/bmjdrc-2017-0003951.

Veverka M, Marsh K, Norman S, et al. A Pediatric Diabetic Ketoacidosis Management Protocol Incorporating a Two-Bag Intravenous Fluid System Decreases Duration of Intravenous Insulin Therapy. J Pediatr Pharmacol Ther. 2016;21(6):512-517. doi:10.5863/1551-6776-21.6.5121.

Velasco JP, Fogel J, Levine RL, Ciminera P, Fagan D, Bargman R. Potential clinical benefits of a two-bag system for fluid management in pediatric intensive care unit patients with diabetic ketoacidosis. *Pediatr Endocrinol Diabetes Metab.* 2017;23(1):6-13. doi:10.18544/PEDM-23.01.0068